martes, 14 de abril de 2015

COMPARACIÓN ENTRE FUENTES CONMUTADAS Y LINEALES

-Tamaño y peso:

 las fuentes de alimentación lineales utilizan un transformador funcionando a la frecuencia de 50 o 60 hertzios. Este transformador de baja frecuencia es varias veces más grande y más pesado que un transformador correspondiente de fuente conmutada, el cual funciona en frecuencias típicas de 50 kilociclos a 1 megaciclo.La tendencia de diseño es de utilizar frecuencias cada vez mas altas mientras los transistores lo permitan para disminuir el tamaño de los componentes pasivos (capacitores inductores trasnformadores).
Voltaje de la salida – las fuentes de alimentación lineales regulan la salida usando un voltaje más alto en las etapas previas y luego disipando energía como calor para producir un voltaje más bajo, regulado. Esta caída de voltaje es necesaria y no puede ser eliminada mejorando el diseño. Las fuentes conmutadas pueden producir voltajes de salida que son más bajos que el voltaje de entrada, más altos que el voltaje e incluso inversos al voltaje de entrada, haciéndolos versátiles y mejor adaptables a voltajes de entrada variables.



-Eficiencia, calor, y energía disipada:

Una fuente lineal regula el voltaje o la corriente de la salida disipando el exceso de energía como calor, lo cual es ineficaz. Una fuente conmutada usa la señal de control para variar el ancho de pulso, tomando de la alimentación solamente la energía requerida por la carga. En todas las topologías de fuentes conmutadas, se apagan y se encienden los transistores completamente. Así, idealmente, las fuentes conmutadas son 100% eficientes. El único calor generado se da por las características no ideales de los componentes. Pérdidas en la conmutación en los transistores, resistencia directa de los transistores saturados, resistencia serie equivalente en el inductor y los condensadores, y la caída de voltaje por el rectificador bajan la eficiencia. Sin embargo, optimizando el diseño, la cantidad de energía disipada y calor pueden ser reducidos al mínimo. Un buen diseño puede tener una eficiencia de conversión de 95%. Típicamente 75-85% en fuentes de entre 10-50W.Las fuentes conmutadas mas eficientes utilizan rectificación síncrona con transistores Mosfet saturados en el momento adecuado en vez de diodos.


-Complejidad:

 un regulador lineal consiste en última instancia un transistor de potencia, un CI de regulación de voltaje y un condensador de filtro de ruido। En cambio una fuente conmutada contiene típicamente un CI regulador, uno o varios transistores y diodos de potencia como así también un transformador, inductores, y condensadores de filtro. Múltiples voltajes se pueden generar a partir del mismo núcleo de transformador. Para ello se utiliza el control por ancho de pulso de entrada aunque las diferentes salidas pueden tener dificultades para la regulación de carga. Ambos necesitan una selección cuidadosa de sus transformadores. En las fuentes conmutadas debido al funcionamiento a altas frecuencias las perdidas en las pistas del circuito impreso por inductancia de perdida y las capacidades parásitas llegan a ser importantes.


-Interferencia por radiofrecuencia:

La corriente en las fuentes conmutadas tiene cambios abruptos , y contiene una proporción grande de componentes espectrales de alta frecuencia Cables o pistas largas entre los componentes pueden reducir la eficacia de alta frecuencia de los filtros a condensadores en la entrada y salida Esta corriente de alta frecuencia puede generar interferencia electromagnética indeseable. Filtros EMI y blindajes de RF son necesarios para reducir la interferencia. Las fuentes de alimentación lineales no producen generalmente interferencia, y se utilizan para proveer de energía donde la interferencia de radio no debe ocurrir.
-Ruido electrónico en los terminales de salida de fuentes de alimentación lineales baratas con pobre regulación se puede experimentar un voltaje de CA Pequeño “montado” sobre la CC. de dos veces la frecuencia de alimentación (100/120 Ciclos). Esta “ondulación” (Ripple en Inglés) está generalmente en el orden de varios milivoltios, y puede ser suprimido con condensadores de filtro mas grandes o mejores reguladores de voltaje. Este voltaje de CA Pequeño puede causar problemas o interferencias en algunos circuitos; por ejemplo, cámaras fotográficas análogas de seguridad alimentadas con este tipo de fuentes pueden tener la modulación indeseada del brillo y distorsiones en el sonido que produce zumbido audible. Las fuentes de alimentación lineales de calidad suprimirán la ondulación mucho mejor. En cambio las Fuentes conmutadas no exhiben generalmente la ondulación en la frecuencia de la alimentación, sino salidas generalmente más ruidosas a altas frecuencias. El ruido está generalmente relacionado con la frecuencia de la conmutación.

-Ruido acústico:

 Las fuentes de alimentación lineales emiten típicamente un zumbido débil, en la baja frecuencia de alimentación, pero ésta es raramente audible (la vibración de las bobinas y las chapas del núcleo del transformador suelen ser las causas ). Las Fuentes conmutadas con su funcionamiento mucho más alto en frecuencia, no son generalmente audibles por los seres humanos (a menos que tengan un ventilador, como en la mayoría de las computadoras personales). El funcionamiento incorrecto de las fuentes conmutadas puede generar sonidos agudos, ya que genera ruido acústico en la frecuencia del oscilador.

-Factor de Potencia:

 las Fuentes lineales tienen bajo factor de potencia porque la energía es obtenida en los picos de voltaje de la línea de alimentación.La corriente en las fuentes conmutadas simples no sigue la forma de onda del voltaje, sino que en forma similar a las fuentes lineales la energía es obtenida solo de la parte mas alta de la onda sinusoidal, por lo que su uso cada vez mas frecuente en computadoras personales y lámparas fluorescentes se constituyo en un problema creciente para la distribución de energía.Existen fuentes conmutadas con una etapa previa de corrección del factor de potencia que reduce grandemente este problema y son de uso obligatorio en algunos países particularmente europeos a partir de determinadas potencias.

-Ruido eléctrico:

sobre la línea de la alimentación principal puede aparecer ruido electrónico de conmutación que puede causar interferencia con equipos de A/V conectados en la misma fase. Las fuentes de alimentación lineares raramente presentan este efecto. Las fuentes conmutadas bien diseñadas poseen filtros a la entrada que minimizan la interferencia causada en la línea de alimentación principal.



PRUEBA Y PROTECCIÓN DE FUENTES CONMUTADAS

Al reparar aparatos electrónicos con fuente conmutada (llamadas también popularmente: "swichadas", derivado de su denominación en Inglés: switched power supply), en muchos casos, encontramos que resulta necesario probarlas desligadas o desconectadas del resto del equipo, para verificar si funcionan correctamente y proporcionan los voltajes adecuados.Pero ... Cuidado !! , algunas fuentes de alimentación de este tipo, no pueden ponerse a funcionar en vacío, sin carga o consumo en su salida.Por otra parte, aunque se trate de una fuente que por su diseño, puede funcionar sin carga, probarla de esa manera no nos da la seguridad, de que mantendrá su funcionamiento y voltaje adecuado cuando esté conectada al resto del equipo.
Por ello, lo recomendable, es probarlas siempre con un consumo o carga adecuada, similar a la que tendrá durante su desempeño normal en el equipo del cual forma parte.
Se describe aquí, una alternativa sencilla, pero muy utilizada para la prueba de fuentes conmutadas, especialmente en Televisores y Monitores de PC de TRC (Tubo de Rayos Catódicos o Cinescopio).Básicamente, se trata de desconectar o eliminar, temporalmente el consumo en la línea de +B (o B+), que alimenta la etapa de salida horizontal (la de mayor consumo en TV y monitores), y conectar como carga o consumo, un bombillo (bombilla, lámpara, foco) incandescente de uso corriente para iluminación domestica y de potencia adecuada (ver la tabla más adelante).
En las Figuras 1 y 2, se muestran dos maneras de realizar esto.La primera (figura 1) se puede aplicar, tanto en TV y monitores de PC. Se desconecta o "abre" el circuito o línea de +B, se conecta el bombillo o foco, como se muestra en la imagen y se procede a encender la fuente. Si funciona, el bombillo encenderá y mediante el multímetro (tester) se podrá verificar si el voltaje es el correcto para esa fuente.
El segundo método (figura 2) es aplicable solamente en televisores. Se desconecta o retira el transistor de salida horizontal (HOT) y se conecta allí el bombillo, entre los puntos donde estaban conectados el Emisor y Colector de dicho transistor. Se procede a encender la fuente y medir el voltaje que entrega.Este método es práctico, cuando se ha encontrado el transistor de salida horizontal en corto. Al retirarlo, se puede realizar la prueba para verificar si la fuente funciona y si entrega el voltaje correcto, antes de instalar el nuevo transistor.


Consideraciones importantes

En algunos casos, puede ocurrir que al encender el equipo para realizar la prueba, aparezca el voltaje y el bombillo encienda, solo por unos segundos, para luego apagarse.Esto es normal en algunos equipos, en los que por su diseño, la fuente es controlada (ON-OFF) desde el microcontrolador. Ocurre que el "micro" vigila (entre otros) los circuitos de horizontal y/o vertical y al detectar que no funcionan, apaga el equipo. Lo cual es lógico que ocurra en esos casos, pues hemos desconectado temporalmente la etapa horizontal.Sin embargo, para los fines de la prueba, esos pocos segundos de encendido, son suficientes para verificar si el voltaje que entrega la fuente es del valor correcto, especificado en el diagrama o manual de servicio del equipo, lo que nos indicará que la fuente está funcionado correctamente.
Si el voltaje medido durante la prueba, es de un valor diferente del especificado para esa fuente, se debe buscar la causa y solucionarla antes de conectarla a los circuitos que debe alimentar. (una diferencia de menos del 5%, podría ser normal)
Este método de prueba no es aplicable a algunas fuentes conmutadas que utilizan "realimentación" o pulsos de referencia desde el Flyback, como ocurre en algunos modelos de TV Sharp. Sin embargo, funciona para la gran mayoría (más del 94%) de los TV y monitores.




ETAPAS DE LAS FUENTES

Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos:




CONFIGURACIÓN BÁSICA


En el regulador flyback se puede variar sutilmente el modo de trabajo, continuo o discontinuo.

Modo Discontinuo: es el modo Boost estrictamente, donde la energía se vacía completamente del inductor antes de que el transistor vuelva a encenderse.

Modo Continuo: antes que la bobina se vacié enciende nuevamente el transistor। La ventaja de este modo radica en que el transistor sólo necesita conmutar la mitad de un gran pico de corriente para entregar la misma potencia a la carga.


El regulador Forward difiere del Flyback en que agrega un diodo más para ser usado como diodo de libre rodado en el filtro LC y un devanado más en el transformador para lograr el reestablecimiento. Gracias a todo esto puede entregar potencia a la carga mientras el transistor está encendido. El ciclo de trabajo no puede superar el 50%.





Monografias.com

La regulación del voltaje de salida se lleva a cabo mediante el empleo de un sistema de retroalimentacion donde el voltaje de salida es censado por un circuito de control. Este circuito de control toma una muestra de la salida que más corriente entrega y la compara con una rampa de voltaje produciendo un voltaje de error.
Este voltaje de error es usado por la lógica del excitador que proporciona la forma de onda adecuada que gobierna a los transistores de conmutación del convertidor corriente directa en corriente directa modificándole su ciclo de trabajo y(o) la frecuencia de conmutación, según sean las variaciones de la corriente de carga y del voltaje de salida obteniéndose un voltaje de directa de salida muy estable. Este sistema puede funcionar sin el rectificador ni el filtro de entrada a partir de un voltaje de entrada de corriente directa. Las fuentes conmutadas normalmente no varían la frecuencia de conmutación, sino el ciclo útil del pulso de la señal modulándolo en dependencia de la corriente que consuma la carga.
En los circuitos de conmutación el transistor trabaja como un interruptor. Cuando el transistor se satura, el Vce es pequeño (de saturación) y la corriente es grande. Cuando se corta el transistor la corriente es cero y el Vce es grande siendo la disipación de potencia pequeña. Solamente se disipa un poco de potencia en el momento de transición de corte a saturación del transistor.

Esquema General de una Fuente Conmutada:


Monografias.com


Clasificación de las Fuentes Conmutadas.

Las Fuentes Conmutadas se clasifican de la forma siguiente:

Fuentes Auto oscilantes: Estas fuentes no presentan pastilla reguladora, es decir se comportan como un verdadero oscilador con retroalimentación positiva.

Fuentes con pastilla reguladora: Contienen al menos un regulador de ancho de pulso.

Con Fuente Auxiliar: Contiene una fuente que garantiza la alimentación del PWM.

Fuente de Auto arranque: Son aquellas que no necesitan una fuente auxiliar, porque el PWM se alimenta del mismo voltaje que él produce a partir de un pulso de arranque.

Fuente ATX: Formada por una fuente auxiliar del tipo de auto arranque y una fuente principal del tipo "con pastilla reguladora".


Clasificación general de las fuentes conmutadas

Monografias.com


Ventajas y Desventajas de las Fuentes Conmutadas.

Las Fuentes Conmutadas presentan las siguientes ventajas y desventajas

Ventajas:

  • Alta eficiencia de conversión de energía.
  • Poco peso y volumen siendo usadas para grandes potencias de salida.
  • Requieren menos materiales y componentes siendo menor su costo.
  • Posibilidad de regulación en una amplia gama de voltajes de entrada variando el ciclo útil de trabajo en forma apropiada.
  • Posibilidad de obtención de voltajes de directa de salida que sean mayores o de polaridad opuesta al voltaje de directa de entrada.

Desventajas:

  • Técnica circuital más complicada (esto ha sido prácticamente superado con el empleo de los dispositivos de control integrados).
  • Mayores interferencias de alta frecuencia.
  • Mayor dificultad para obtener una baja ondulación del voltaje de salida.
  • Reacción más lenta a los cambios bruscos de carga.
  • Necesidad de usar filtros para evitar que salga ruido (frecuencia de conmutación) para la línea o para la salida.

Descripción de las nuevas señales del conector de la fuente ATX.

Monografias.com


Esquema General de la Fuente ATX.

A continuación proponemos como Esquema General de la Fuente ATX el siguiente:

Monografias.com

Clásicamente, para su estudio y reparación, se divide a la fuente en dos etapas clasicas: la primaria y la secundaria.



PARTES DE UNA FUENTE










FUENTES LINEALES Y FUENTES CONMUTADAS

Seguramente recuerdas que los primeros cargadores para teléfonos pesaban mucho más que los actuales.

Los más pesados utilizaban fuentes de alimentación lineales, mientras que los más ligeros usan fuentes de alimentación conmutadas.

En una fuente de alimentación lineal se reduce la tensión mediante un transformador, y seguidamente se rectifica con diodos. Para que la corriente sea más estable se filtra con condensadores electrolíticos, y en algunos casos se añaden estabilizadores para que la tensión de salida tenga un valor exacto.
Clroador salino con fuente de alimentación lineal
Este tipo de fuentes tiene una gran pérdida de energía en el transformador. Además, para conseguir corrientes de salida muy altas, el transformador debe tener estar bobinado con hilo de cobre muy grueso, lo que hace que sea muy grande y pesado.
Las fuentes de alimentación conmutadas utilizan un principio similar, pero con diferencias muy importantes. Básicamente, aumentan la frecuencia de la corriente, que pasa de oscilar 50/60Hz a más de 100kHz, dependiendo del sistema utilizado.
Fuente de alimentación conmutada
Al aumentar tanto la frecuencia, reducimos las pérdidas y conseguimos reducir el tamaño del transformador, y con ello su peso y volumen.
En este tipo de fuentes, la corriente se convierte de alterna a continua, después otra vez a alterna con una frecuencia distinta a la anterior, y seguidamente vuelve a transformarse en continua. Por eso muchos equipos basados en fuentes conmutadas son conocidas como inversores o inverters.
Un claro ejemplo serían las máquinas de soldadura al arco. Los equipos que usan transformadores lineales (prácticamente han desaparecido) pesan muchísimo más que los de tipo inverter, que no es más que una fuente de alimentación conmutada, adaptada a las características de este tipo de máquinas.
En un variador de velocidad, el funcionamiento es muy similar. Regulando la frecuencia del modificamos la velocidad del motor.
COMO FUNCIONA UNA FUENTE DE ALIMENTACIÓN CONMUTADA
Para entender el funcionamiento de una fuente conmutada, debemos separarla en bloques, y analizarlos paso a paso. De momento vamos a resumirlos, para ir profundizando en los siguientes artículos.

Existen muchos tipos distintos de fuentes, y sería imposible explicar los detalles de cada uno. Por eso, he creído que lo más conveniente es centrarnos en los sistemas más comunes.
Bloques de una fuente de alimentación conmutada (SMPS)
  •  Filtro EMC. Su función es absorber los problemas eléctricos de la red, como ruidos, armónicos, transitorios, etc. También evita que la propia fuente envíe interferencias a la red.
  • Puente rectificador. Solo deja pasar la corriente en un sentido, de modo que convierte la corriente alterna en corriente pulsante, es decir que oscila igual que la corriente alterna, aunque únicamente en un sentido.
  • Corrector del factor de potencia. En determinadas circunstancias, la corriente se desfasa respecto a la tensión, lo que provoca que no se aproveche toda la potencia de la red. 
  • Condensador. Amortigua la corriente pulsante para convertirla en corriente continua con un valor estable.
  • Transistor. Se encarga de cortar y activar el paso de la corriente. De este modo se convierte a la corriente continua en corriente pulsante.
  • Controlador. Activa y desactiva el transistor. Esta parte del circuito suele tener varias funciones, como protección contra cortocircuitos, sobrecargas, sobre tensiones.También controla al circuito de corrección del factor de potencia. Además, mide la tensión de salida de la fuente, y modifica la señal entregada al transistor, para regular la tensión y mantener estable la salida.
  • Transformador. Reduce la tensión, y además aísla físicamente la entrada de la salida.
  • Diodo. Convierte la corriente alterna del transformador a corriente pulsante.
  • Filtro. Convierte la corriente pulsante en continua.
  • Opto acoplador. Enlaza la salida de la fuente con el circuito de control, pero man teniéndolos físicamente separados.
FUENTES CONMUTADAS

Las fuentes conmutadas fueron desarrolladas inicialmente para aplicaciones militares y aerospaciales en los años 60, por ser inaceptable el peso y volumen de las lineales, se han desarrollado desde entonces diversas topología y circuitos de control, algunas de ellas son de uso común en fuentes conmutadas para aplicaciones industriales y comerciales.


Rectificación y filtro de entrada

Las fuentes conmutadas son convertidores cc-cc, por lo que la red debe
ser previamente rectificada y filtrada con una amplitud de rizado aceptable. La mayoría de las fuentes utilizan el circuito de la figura para operar desde 90 a 132 Vac o de 180 a 260 Vac según sea la posición del conmutador.


En la posición de abierto se configura como rectificador de onda completa obteniéndose aproximadamente 310 Vcc desde la red de 220 Vac. En la posición de cerrado el circuito funciona como rectificador doblador de tensión, obteniéndose también 310 Vcc a partir de 110 Vac.
Para evitar sobrecalentamientos los condensadores electrolitos de filtro (C1 y C2) deben ser de bajo ESR (baja resistencia interna) y de la tensión adecuada. Es conveniente conectar en paralelo con estos otros condensadores tipo MKP para mejor desacoplo de alta frecuencia de conmutación. Los rectificadores deben soportar una tensión inversa de 600v.


Pico de arranque

Al arrancar una fuente conmutada, la impedancia presentada a la red es muy baja al encontrarse los condensadores descargados, sin una resistencia en serie adicional la corriente inicial sería excesivamente alta. Las fuentes de media y gran potencia disponen de circuitos activos con resistencia limitadora que se cortocircuito por medio de relés o de conmutadores estáticos cuando ya están los condensadores cargados. En el caso de las fuentes de AMV se utiliza un transistor MOS-FET de potencia.


Protección contra transitorios

Además del filtrado de ruidos re inyectados a la red que incorporan las fuentes conmutadas, es aconsejable la utilización de un varistor conectado a la entrada para proteger contra picos de tensión generados por la conmutación en circuitos inductivos de las proximidades o por tormentas eléctricas.


CONFIGURACIONES BÁSICAS

Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos:


1) En el primer bloque rectificamos y filtramos la tensión alterna de entrada convirtiéndola en una continua pulsante.

2) El segundo bloque se encarga de convertir esa continua en una onda cuadrada de alta frecuencia (10 a 200 kHz.), la cual es aplicada a una bobina o al primario de un transformador.

3) El tercer bloque rectifica y filtra la salida de alta frecuencia del bloque anterior, entregando así una corriente continua pura.

4) El cuarto bloque se encarga de comandar la oscilación del segundo bloque. Este bloque consiste de un oscilador de frecuencia fija, una tensión de referencia, un comparador de tensión y un modulador de ancho de pulso (PWM). El modulador recibe el pulso del oscilador y modifica su ciclo de trabajo según la señal del comparador, el cual coteja la tensión continua de salida del tercer bloque con la tensión de referencia.

fuente que tiene configuraciones básicas: BUCK , BOOST, BUCK-BOOST.


Buck: el circuito interrumpe la alimentación y provee una onda cuadrada de ancho de pulso variable a un simple filtro LC. La tensión aproximada es Vout = Vin * ciclo de trabajo y la regulación se ejecuta mediante la simple variación del ciclo de trabajo. En la mayoría de los casos esta regulación es suficiente y sólo se deberá ajustar levemente la relación de vueltas en el transformador para compensar las pérdidas por acción resistiva, la caída en los diodos y la tensión de saturación de los transistores de conmutación.

Boost: el funcionamiento es más complejo. Mientras el Buck almacena la energía en una bobina y éste entrega la energía almacenada más la tensión de alimentación a la carga.

Buck-Boost: los sistemas conocidos como Flyback son una evolución de los sistemas anteriores y la diferencia fundamental es que éste entrada a la carga sólo la energía almacenada en la inductancia. El verdadero sistema Boost sólo puede regular siendo Vout mayor que Vin, mientras que el Flyback puede regular siendo menor o mayor la tensión de salida que la de entrada.

FLYBACK de salidas múltiples:

La figura muestra la simplicidad con que pueden añadirse salidas aisladas a un convertidor Flyback.


Los requisitos para cada salida adicional son un secundario auxiliar, un diodo rápido y un condensador. Para la regulación de las salidas auxiliares suele utilizarse un estabilizador lineal de tres terminales a costa de una pérdida en el rendimiento.


FORWARD de salidas múltiples

Por cada salida adicional es necesario un secundario auxiliar, dos diodos rápidos, una inductancia y un condensador de filtro. Esto hace que sea más costoso que el Flyback.

Para mejorar la regulación en las salidas auxiliares se utilizan estabilizadores lineales.